Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5303, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082339

RESUMO

The L-type Ca2+ channel CaV1.2 is essential for arterial myocyte excitability, gene expression and contraction. Elevations in extracellular glucose (hyperglycemia) potentiate vascular L-type Ca2+ channel via PKA, but the underlying mechanisms are unclear. Here, we find that cAMP synthesis in response to elevated glucose and the selective P2Y11 agonist NF546 is blocked by disruption of A-kinase anchoring protein 5 (AKAP5) function in arterial myocytes. Glucose and NF546-induced potentiation of L-type Ca2+ channels, vasoconstriction and decreased blood flow are prevented in AKAP5 null arterial myocytes/arteries. These responses are nucleated via the AKAP5-dependent clustering of P2Y11/ P2Y11-like receptors, AC5, PKA and CaV1.2 into nanocomplexes at the plasma membrane of human and mouse arterial myocytes. Hence, data reveal an AKAP5 signaling module that regulates L-type Ca2+ channel activity and vascular reactivity upon elevated glucose. This AKAP5-anchored nanocomplex may contribute to vascular complications during diabetic hyperglycemia.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Artérias/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Canais de Cálcio Tipo L/genética , AMP Cíclico/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Camundongos Knockout , Células Musculares/metabolismo , Ligação Proteica
2.
J Clin Invest ; 129(8): 3140-3152, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162142

RESUMO

Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.


Assuntos
Adenilil Ciclases/metabolismo , Artérias Cerebrais/enzimologia , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/enzimologia , Hiperglicemia/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Adenilil Ciclases/genética , Animais , Canais de Cálcio Tipo L/biossíntese , Canais de Cálcio Tipo L/genética , Artérias Cerebrais/patologia , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Hiperglicemia/genética , Hiperglicemia/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
3.
Elife ; 82019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821687

RESUMO

Elevated glucose increases vascular reactivity by promoting L-type CaV1.2 channel (LTCC) activity by protein kinase A (PKA). Yet, how glucose activates PKA is unknown. We hypothesized that a Gs-coupled P2Y receptor is an upstream activator of PKA mediating LTCC potentiation during diabetic hyperglycemia. Experiments in apyrase-treated cells suggested involvement of a P2Y receptor underlying the glucose effects on LTTCs. Using human tissue, expression for P2Y11, the only Gs-coupled P2Y receptor, was detected in nanometer proximity to CaV1.2 and PKA. FRET-based experiments revealed that the selective P2Y11 agonist NF546 and elevated glucose stimulate cAMP production resulting in enhanced PKA-dependent LTCC activity. These changes were blocked by the selective P2Y11 inhibitor NF340. Comparable results were observed in mouse tissue, suggesting that a P2Y11-like receptor is mediating the glucose response in these cells. These findings established a key role for P2Y11 in regulating PKA-dependent LTCC function and vascular reactivity during diabetic hyperglycemia.


Assuntos
Vasos Sanguíneos/fisiopatologia , Cálcio/metabolismo , Hiperglicemia , Contração Muscular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL
4.
Sci Signal ; 10(463)2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28119464

RESUMO

Hypercontractility of arterial myocytes and enhanced vascular tone during diabetes are, in part, attributed to the effects of increased glucose (hyperglycemia) on L-type CaV1.2 channels. In murine arterial myocytes, kinase-dependent mechanisms mediate the increase in CaV1.2 activity in response to increased extracellular glucose. We identified a subpopulation of the CaV1.2 channel pore-forming subunit (α1C) within nanometer proximity of protein kinase A (PKA) at the sarcolemma of murine and human arterial myocytes. This arrangement depended upon scaffolding of PKA by an A-kinase anchoring protein 150 (AKAP150) in mice. Glucose-mediated increases in CaV1.2 channel activity were associated with PKA activity, leading to α1C phosphorylation at Ser1928 Compared to arteries from low-fat diet (LFD)-fed mice and nondiabetic patients, arteries from high-fat diet (HFD)-fed mice and from diabetic patients had increased Ser1928 phosphorylation and CaV1.2 activity. Arterial myocytes and arteries from mice lacking AKAP150 or expressing mutant AKAP150 unable to bind PKA did not exhibit increased Ser1928 phosphorylation and CaV1.2 current density in response to increased glucose or to HFD. Consistent with a functional role for Ser1928 phosphorylation, arterial myocytes and arteries from knockin mice expressing a CaV1.2 with Ser1928 mutated to alanine (S1928A) lacked glucose-mediated increases in CaV1.2 activity and vasoconstriction. Furthermore, the HFD-induced increases in CaV1.2 current density and myogenic tone were prevented in S1928A knockin mice. These findings reveal an essential role for α1C phosphorylation at Ser1928 in stimulating CaV1.2 channel activity and vasoconstriction by AKAP-targeted PKA upon exposure to increased glucose and in diabetes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/metabolismo , Serina/metabolismo , Doença Aguda , Adulto , Idoso , Animais , Canais de Cálcio Tipo L/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Glucose/farmacologia , Humanos , Hiperglicemia/genética , Immunoblotting , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Fosforilação/efeitos dos fármacos , Serina/genética , Vasoconstrição/efeitos dos fármacos , Adulto Jovem
6.
J Biol Chem ; 290(12): 7918-29, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25670860

RESUMO

Enhanced arterial tone is a leading cause of vascular complications during diabetes. Voltage-gated K(+) (KV) channels are key regulators of vascular smooth muscle cells (VSMCs) contractility and arterial tone. Whether impaired KV channel function contributes to enhance arterial tone during diabetes is unclear. Here, we demonstrate a reduction in KV-mediated currents (IKv) in VSMCs from a high fat diet (HFD) mouse model of type 2 diabetes. In particular, IKv sensitive to stromatoxin (ScTx), a potent KV2 blocker, were selectively reduced in diabetic VSMCs. This was associated with decreased KV2-mediated regulation of arterial tone and suppression of the KV2.1 subunit mRNA and protein in VSMCs/arteries isolated from HFD mice. We identified protein kinase A anchoring protein 150 (AKAP150), via targeting of the phosphatase calcineurin (CaN), and the transcription factor nuclear factor of activated T-cells c3 (NFATc3) as required determinants of KV2.1 suppression during diabetes. Interestingly, substantial reduction in transcript levels for KV2.1 preceded down-regulation of large conductance Ca(2+)-activated K(+) (BKCa) channel ß1 subunits, which are ultimately suppressed in chronic hyperglycemia to a similar extent. Together, our study supports the concept that transcriptional suppression of KV2.1 by activation of the AKAP150-CaN/NFATc3 signaling axis contributes to enhanced arterial tone during diabetes.


Assuntos
Artérias/fisiologia , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Tono Muscular/fisiologia , Canais de Potássio Shab/fisiologia , Animais , Diabetes Mellitus Experimental/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...